[SR,

T A
M)

BROWN UNIVERSITY

Robust Proximity Queries in Implicit
Voronoi Diagrams

G. Liotta, F. P. Preparata. and R. Tamassia

Department of Computer Science
Brown University
Providence, Rhode Island 02912

CS-96-16
May 1996

Department STTOTON ¥ el i

/ amrm""*ﬁ’ﬁéﬁ"ﬁiﬁ?i
Approvad oy LSIT -

of
Computer Science

DTIC QUALLTY L:SPECTED 1

- THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

- CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

Robust Proximity Queries in Implicit
Voronoi Diagrams

G. Liotta, F. P. Preparata, and R. Tamassia

Department of Computer Science
Brown University
Providence, Rhode Island 02912

CS-96-16
May 1996

19960909 099

§F 298 MASTER COPY REEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE R orod.0168.

Pubiic reporing durgan fot this coliaciion of information s estimated 10 Aveisge 1 hour pet responss, including the time for teviewing Instructions, sesrching existing data sourcas.
.f&.mﬁ»?’ ¥ inisinng the dats needed. ang completing ang teviewing lhg eoliecno:.oi Information, Send comment regarding this burden estimates of lr'\‘y other aspec! of this

ciion of Mormation, Inclycing sup eslions for uducsng this burden. 10 Washingion Headquanats Services. Directorate lor mtormation srations snd Reponty, 1215 JeHerson
Davis Highway, Sune 1304, Atbngion, VA 22202-4302, 8nC 1o the Oftice of Managemant and gudwl. Paperwork Reduclion Project (0704-0188). Washingion, DC 20503

T AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. ns:jm TYPE AND DATES COVERED
%, TITLE AND SUBTITLE - S, FUNDING NUMBERS
Robust Proximity Queries in Implicit Voronoi Diagrams
| DAA[HOA-F6-1- 0013
8. AUTHOR(S)
Giuseppe Liotta, Franco P. Preparata, Roberto Tamassia .
3. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Center for Geometric Computing
Department of Computer Science CS-96-16
Brown University '
Box 1910, Providence, RI 02912-1910

9. SPONSORING / MONITORING AGENCY NAME{(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

lplg g.rm); %lzels]earth Office
J. Bo
Revearch Triangle Park, NC 27709-2211 ARO 34990 1-MA= M WA

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as

an official Department of the Army position, policy or decision, unless so designated by other documentation.

128. DISTRIBUTION / AVAILABILITY STA'TEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

In the context of methodologies intended to confer robustness to geometric algor-
jthms, we elaborate on the exact computation paradigm and formalize the notion of
degree of a geometric algorithm, as a worst-case quantification of the precision
(number of bits) to which arithmetic calculation have to be executed in order to
guarantee topological correctness. We also propose a formalism for the expedi-
tious evaluation of algorithmic degree. As an application of this paradigm and an
illustration of our general approach, we consider the important classical problem

. of proximity queries in 2 and 3 dimensions, and develop a new technique for the
efficient and robust execution of such queries based on an implicit representation
of Voronoi diagrams. Our new technique gives both low degree and fast query
time, and for 2D queries is optimal with respect to both cost measures of the para-
digm, asymptotic number of operations and arithmetic degree.

14, SUBJECT TERMS 15. NUMBER iF PAGES

Computational Geometry, robustness, proximity queries - 6. PRICE CODE .

17, SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 16. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE OF ARSTRACT .

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

! . S anra——
= . : 313
SN 7640-01-280-5500 p Enclosure 1 Bunderd Folm 25a fav s '
o 208-102

. e

Robust Proximity Queries in Implicit Voronoi

Diagrams®
(Preliminary Version)

Giuseppe Liotta- Franco P. Preparata Roberto Tamassia

Center for Geometric Computing
Department of Computer Science, Brown University
115 Waterman Street, Providence, RI 02912-1910, USA

{gl,franco,rt}@cs.brown.edu

May 10, 1996

Abstract

In the context of methodologies intended to confer robustness to geometric algo-
rithms, we elaborate on the exact computation paradigm and formalize the notion of
degree of a geometric algorithm, as a worst-case quantification of the precision (num-
ber of bits) to which arithmetic calculation have to be executed in order to guarantee
topological correctness. We also propose a formalism for the expeditious evaluation of
algorithmic degree. As an application of this paradigm and an illustration of our general
approach, we consider the important classical problem of proximity queries in 2 and 3
dimensions, and develop a new technique for the efficient and robust execution of such
queries based on an implicit representation of Voronoi diagrams. Our new technique
gives both low degree and fast query time, and for 2D queries is optimal with respect to
both cost measures of the paradigm, asymptotic number of operations and arithmetic
degree.

*Research supported in part by the U.S. Army Research Office under grant DAAH04-96-1-0013, and by
the N.A.T.O.-C.N.R. Advanced Fellowships Programme.

1 Introduction

The increasing demand for efficient and reliable geometric software libraries in key appli-
cations such as computer graphics, geographic information systems, and computer-aided
manufacturing is stimulating a major renovation in the field of computational geometry.
The inadequacy of the traditional simplified framework has become apparent, and it is
being realized that, in order to achieve an effective technology transfer, new frameworks
and models are needed to design and analyze geometric algorithms that are efficient in a
practical realm.

The real-RAM model with its implicit infinite-precision requirement, has proved un-
realistic and needs to be replaced with a realistic finite-precision model where geometric
computations can be carried out either exactly or with a guaranteed error bound. This has
motivated a great deal of research on the subject of robust computational geometry (see,
e.g.. [4, 11, 10, 17, 23, 24, 26, 29, 28, 32, 39, 45, 48, 19]). Also, efficiency must be evalu-
ated in a finer framework than the conventional “big-Oh” analysis. In particular, constant
factors dependent on the precision requirement of the numerical computations should be
taken into account. For an early survey of the different approaches to robust computational
geometry the reader is referred to [31].

To a first, rough, approximation, robustness approaches are of two main types: per-
turbing and nonperturbing. Perturbing approaches transform the given problem into one
that is intended not to suffer from well-identified shortcomings; nonperturbing approaches
are based on the notion of “exact” (rather than “approximate”) computations, with the
assumption that (bounded-length) input data are error free. In this category falls the
exact geometric computation paradigm independently advocated by Yap [49] and by the
Saarbriicken school [9], and so does our approach. Within this paradigm, we introduce
the concept of degree of a geometric algorithm, which characterizes, up to a small additive
constant, the arithmetic precision (i.e., number of bits) needed by a large class of geo-
metric algorithms. Namely, if the coordinates of the input points of a degree-d algorithm
within this class are b-bit integers, then the algorithm may be required on some instances
to perform arithmetic computations with bit precision db+ O(1).

Theoretical analysis and experimental results show that multiprecision numerical com-
putations take up most of the CPU time of exact geometric algorithms (see, e.g., [34, 40]).
Thus, we believe that, in defining the efficiency of a geometric algorithm, the degree should
be considered as important as the asymptotic time complexity and should correspondingly
play a major role in the design stage.

Research along these lines involves re-examining the entire rich body of computational
geometry as we know it today. In this paper, we consider as a test case a problem area,
geometric proximity, which plays a major role in applications and has recently attracted
considerable attention because, due to its demands of high precision for exact computation,
it is particularly appropriate in assessing effectiveness of robust approaches (see, e.g., [8,
10, 18, 25, 26, 23, 46)).

While Voronoi diagrams are interesting in their own right, the main reason for con-

structing and storing them is to efficiently answer fundamental proximity queries such as
nearest-neighbor and circular-range queries. In this paper, we use the notion of degree! to
illustrate the drawbacks of current approaches, and adopt it as a design criterion in devel-
oping a new technique for the efficient and robust execution of proximity queries, based on
an implicit representation of Voronoi diagrams.

Throughout this paper, we assume that the coordinates of all input data (also called
primitive points) are b-bit integers. Hence, parameter b denotes the input precision. In order
to perform exact computations, the coordinates of the points computed by the algorithm
(referred to here as derived points, e.g., the vertices of a Voronoi diagram of points and
segments) must be stored with a representation scheme that supports rational or algebraic
numbers as data types (through multiprecision integers).

Consider, for example, the nearest-neighbor query problem: given a set S of n sites in the
plane, find the site closest to a query point g. The well-known optimal deterministic method
for this problem consists of performing point-location in the Voronoi diagram of S, denoted
V(S). This takes optimal time O(log n). However, in the straightforward implementation
of this method, the coordinates (z,y) of a vertex of V(S) are rational numbers given by the
ratio of two 3 X 3 determinants whose entries are integers of well-defined maximum modulus.
Hence, homogeneous coordinates (X,Y, W) are used for the exact representation of V(S),
where z = X/W,y=Y/W, X and Y are 3b-b bit integers, and W is a 2b-bit integer. The
fundamental operation used by any point location algorithm is the point-line discrimination,
which consists of determining whether the query point g is to the left or to the right of an
edge between vertices vy and vz. For the case of the Voronoi diagram V (), this is equivalent
to evaluating the sign of a 3 x 3 determinant whose rows are the homogeneous coordinates of
g. v1, and vy, a computation that needs about 6b bits of precision. This should be compared
with the O(n)-time brute-force method that computes the (squares of the) distances from
g to all the sites of S, and executes arithmetic computations with only 2b bits of precision
(which is optimal).

The technique presented in this paper uses a new point-location data structure for
Voronoi diagrams such that the test operations executed in the point location procedure
are executed with optimal 2b-bit precision. Hence, our approach reconciles efficiency with
robustness.

Our approach also supports an object-oriented programming style where access to the
geometry of Voronoi diagrams in point-location queries is encapsulated in a small set of
geometric test primitives. :

The main results of this work are summarized in Table 1. Considering, for the time
being, the degree as a measure of complexity, we show that previous methods exhibit a
sharp tradeoff between degree and query time. Namely, low degree is achieved by the slow
brute-force search method, while fast algorithms based on point-location in a preprocessed
Voronoi diagram have high degree. Our new technique gives instead both low degree and

"While this research was nearing completion, Burnikel’s thesis [8] was distributed on the Web, and we
became aware that Burnike! had independently defined the concept of precision, which is equivalent of our
notion of degree.

fast query time, and is optimal with respect to both cost measures for 2D queries in sets of

points.
i Query { Method [Degree | Time ||
brute-force distance comparison 2% O(n)
nearest neighbor point location in explicit Voronoi diagram 6 O(logn) *
point location in implicit Voronoi diagram 2 * O(logn) *
k-nearest neighbors brute-force distance comparison 2% O(n)
and point location in explicit order-k Voronoi diagram | 6 Ologn+ k) *
circular range search point location in tmplicit order-k Voronot diagram | 2 * Ologn + k) *
nearest neighbor among | brute-force distance comparison 6 O(n)
points and segments point location in explicit Voronoi diagram 64 O(logn) *
' point location in implicit Voronot diagram 6 O(logn) *
brute-force distance comparison 2 * O(n)
3D nearest neighbor point location in explicit 3D Voronoi diagram 8 O(log” n)
point location in implicit 8D Voronot diagram 3 O(log” n)

Table 1: Comparison of the degree and time of algorithms for some fundamental proximity
query problems. A * denotes optimality. The new technique introduced in this paper
(point location in an implicit Voronoi diagram) always outperforms previous methods and
is optimal for 2D queries.

The rest of this paper is organized as follows. Our approach is described in Section 2,
where the concept of degree of a geometric algorithm is formalized. In Section 3, we consider
the following fundamental proximity queries for a set of point sites in the plane: nearest
neighbor search, k-nearest neighbors search, and circular range search. We show that the
existing methods for answering such queries efficiently have degree 6, and we present our
new technique, based on implicit Voronoi diagrams, that achieves optimal degree 2. In
Sections 4-5, we extend our approach to nearest neighbor search queries in a set of 3D
point sites and in a set of point and segment sites in the plane, respectively. Practical
improvements are presented in Section 6. Finally, further research directions are discussed
in Section 7.

2 Degree of Geometric Problems

The numerical computations of a geometric algorithm are basically of two types: tests
and constructions. The two types of computations have clearly distinct roles. Tests are
associated with branching decisions in the algorithm that determine the flow of control,
whereas constructions are needed to produce the output data of the algorithm.

Input data (whether the result of empirical observations or not) are reasonably assumed
to be expressed with b bits, for some small integer b. Approximations in the execution of
constructions give rise to approximate results, which may be not only acceptable but also
mandated: indeed, as long as their maximum absolute error does not exceed the resolution

required by the application (such as spacing of raster lines in graphics), it would be wasteful
to produce substantially more accurate results.

On the other hand, approximations in the execution of tests may produce an incorrect
branching of the algorithm. Such event may have catastrophic consequences, giving rise to
structurally incorrect results. Therefore, tests are much more critical, and their execution
must be carried out with complete accuracy.

We shall therefore characterize geometric algorithms on the basis of the complexity of
their test computations. In a large class of geometric algorithms, tests are based on the
evaluation of the sign of a multivariate polynomial. Notice that, in general, when all input
data are dimensionally homogeneous (such as coordinates of points), the polynomial is also
homogeneous because each of its monomials has the physical dimension of a volume in d-
dimensional space (for some integer d depending upon the nature of the test). Experimental
results (see, e.g., [34, 40]) show that a substantial fraction of the CPU time is spent in the
evaluation of such polynomials.

Now we define the concept of arithmetic degree. We consider algorithms that evaluate
multivariate polynomials over their variables. A primative variable is an input variable of the
algorithm and has conventional arithmetic degree 1. The arithmetic degree of a variable v
is the arithmetic degree of the multivariate polynomial E that computes v. The arithmetic
degree of E is the maximum (in the homogeneous case, the common) arithmetic degree of
its monomials. The arithmetic degree of a monomial is the sum of the arithmetic degrees of
of its variables. As observed above, our definition of arithmetic degree coincides with that
of precision in Burnikel’s work [8] and is related to that of depth proposed by Yap [48, 49],
as discussed below.

Definition 1 An algorithm has degree d if its test computations involve the evaluation of
multivariate polynomials of arithmetic degree at most d.

We make the assumption that every multivariate polynomial used in tests depends
upon a bounded-size set of primitive variables and therefore has O(1) monomials. This
assumption holds for a large class of geometric computations, including those discussed in
this paper.

An immediate consequence of Definition 1 and of the above assumption is the following
fact, which justifies our use of the degree of an algorithm to characterize the precision
required in test computations.

Lemma 1 If an algorithm has degree d and its input variables are b-bit integers, then all
the test computations can be carried out with db+ O(1) bits.

Definition 2 A problem II has degree d if any algorithm that solves I has degree at least
d.

It is worth mentioning that related definitions have been given by Yap and are based on
the concept depth of derivation [48, 49). Given a set of numbers, any number z of the set

has depth 0. A number has depth at most d if it can be obtained by executing a rational
operation on numbers with depth d — 1 or it is the result of a root extraction from a degree
k polynomial whose coefficients have depth at most d — k. An algorithm has depth d if it
performs only rational operations such that all the intermediate computed numbers have
depth of derivation at most d with respect to the set of input numbers. Clearly d is the least
possible integer such that all the intermediate computed values have depth of derivation at
most d. A problem has depth d if it can be solved by an algorithm with rational bounded
depth d.

Although the definition of depth of a problem can resemble the one of degree of a
problem, the latter seems to be more appropriate to the type of study that we want to
develop, where we aim at minimizing the number of bits needed for computing an exact
value, independently of its (possibly very high) depth.

2.1 Degree of an Algorithm

Typically the support of a geometric test is not naturally expressed by a multivariate polyno-
mial, but, rather, by a pair (E, E;) of expressions involving the four arithmetic operations,
powering, and the extraction of square roots. The test is typically the magnitude com-
parison of E; and F,. Any such expression can be viewed as a binary tree, whose leaves
represent input variables and whose internal nodes are of two types: binary nodes, which
are labeled with an operation from the set {+, —, X, <}, and unary nodes, which are labeled
either with a power or with a square root extraction (notice hat we restrict ourselves to this
type of radicals). If no radical appears in the trees of E; and Ej, then the test is trivially
equivalent to the evaluation of the sign of a polynomial, since E; is a rational function of

the form %l'% (i=1,2, N;, D; are not both trivial polynomials) and

E1 > E, & (=1)?P)+eD) (N, D, — N,Dy) > 0
where

1 ifE<0
”m‘{o if £ >0

(Note that the above predicate implies the inductive assumption that the signs of lower
degree expressions Nj,N2, Dy, and D; are known.)

Suppose now that at least one of the trees of Ey and F; contains radicals. We prune
the trees so that the pruned trees contain no radicals except at their leaves. Then N; and
D; (i = 1,2) can be viewed as polynomials whose variables are the radicals and whose
coefficients are (polynomial) functions of non-radicals. Given a polynomial E in a set of
radicals, for any radical R in this set, we can express E as

E=E'R+E

where neither E” nor E’ contains R. Then

E>0 < E'R>-F.

If E' and E, have the same sign, then the sign of E is their common sign. Otherwise,

E>0 < (-1)"EVNE”R*-E?*) >0

The resulting expression (E”2R2 — E') does not contain R. Therefore by this device,
referred to as segregate and square, we can eliminate one radical. This shows that by the
four rational operations we can reduce the sign test to the computation of the sign of a
multivariate polynomial.

We now present a simple formalism that enables us to rapidly obtain the degree of the
sought multivariate polynomial equivalent to the original algebraic expression.

The terms involved in the formal manipulations are of two types, generic and specific.
Generic terms have the form o° (for a formal variable a and an integer s), representing
an unspecified multivariate polynomial of degree s over primitive variables. Specific terms
have the form p;, for some integer index j, representing a specified expression involving
the operators {-+,—, X, +,1/}. The terms are members of a free commutative semiring,
i.e., addition and multiplication are associative and commutative, addition distributes over
multiplication, and specific terms can be factored out. Beside these conventional algebraic
rules, we have a set of rewriting rules of the form A — B, meaning that the sign of Ais
uniquely determined by the sign of B. Note, the two signs not always coincide: indeed the
correspondence between the signs of the sides depends upon the evaluated signs of other
expressions of lower degree (see the example at the beginning of this section).

The first of these rules is genericization, i.e., a specific term p;, which is known to be a
polvnomial of degree s over primitive variables, can be rewritten as

(1) p; — o° (genericization)

Next, since in this context the only relevant feature of a polynomial is its degree, we
have

(2) oa*a”™ —» o™ (product rule)
@3) *+o* — of (sum rule)
4) -aof — af (sign rule).

The role of specific terms is that we wish to keep track of their structure (that is, their
definition), in order to exploit it when computing least common multiples or multiplying
radicals together. We have therefore the following additional rewriting rules

(5) &+ — pjtpn (common denominator)
(6) 2+ — pippEpipn (common denominator)
(1) pitp; — pi—p? (segregate and square).

6

Note that rule (5) is correct only in our context of analysis of the degree of geometic
tests.

To illustrate this approach we discuss the simple example of the point-to-lines distance
test, i.e., given two lines r; and r; on the plane and a query point g, determine whether ¢
is closer to r; than to rs.

Lemma 2 The point-to-lines distance test can be solved with degree 6.

Proof: Let the equation of r; be a;z + by +¢; = 0 (i = 1,2) and let ¢ = (24, 9,). Then the
: , . Jaizgtbiygter| _ leazgtbrygtea| . .
tesﬁ is to StU('i) the sxgr.l of Jate . T By using the pr.oposed nota.mon,
and with obvious meaning for p; and p,, this test becomes (each arrow being superscripted
with the rules used)
02 02

o - o —©) a?p,—apy, — ofp? - atp? —1) ata? - ata? —(43) o8,

O

The following lemmas describe the degree of other proximity primitives that will be
useful in the rest of the paper. We omit the proofs of such lemmas, since they are either
straightforward or have been already proved in [8]. However, it is worth mentioning that the
proofs in [8] can be substantially simplified by using the notation proposed in this paper.

Let p be a point and r a line in the plane. The point-to-point-line distance test determines
whether a query point g is closer to p or to r.

Lemma 3 The point-to-point-line distance test can be solved with degree 4.

Let p; and p; be two distinct points of the plane and let ¢ be a query point. The points
distance test determines whether g is closer to p; or to ps.

Lemma 4 The point-to-points distance test can be solved with degree 2.

Notice that the above lemma can be easily extended to any space of dimension d.

Another fundamental proximity primitive is the incircle test, that is testing whether the
circle determined by three distinct sites (points and segments) of the plane contains a given
query site. The incircle test is a basic operation for many algorithms that construct the
Voronoi diagram of the sites (see, e.g. [30, 34, 27, 3]). The degree of the incircle test has
been extensively studied by Burnikel [8] and by Burnikel, Mehlhorn and Schirra [10]. Fol-
lowing the notation of Burnikel 8], an incircle test is conveniently expressed as a quadruple
(a1, az, a3; a4), where each a; € {p,1} (¢ = 1,...,4) is either a point or a line on the plane
(a segment is seen by Burnikel as given by the pair of its endpoints and by the underlying
line) and we test whether a4 intersects the circle determined by a;,a2, and a3.

The following lemma is proved observing that the incircle test (p;,p2,ps;ps) can be
answered by determining the sign of 4 X 4 determinant that is an arithmetic degree 4
multivariate polynomial.

Lemma 5 [8] The incircle test (p1, p2, ps; pa) can be solved with degree 4.

Lemma 5 can be easily extended to any dimension d > 2. We describe such test as
(p1,. - -, Pd+1; Pd+2), Where points p1,...,Pd+1 determine a d-dimensional sphere and pg42
is teh query point.

Lemma 6 The insphere test (p1,...,Pa41; Pd+2) in any fized dimension d 2 2 can be solved
with degree d + 2.

For the construction of the Voronoi diagram of a set of points and segments in the
plane Burnikel shows that the most demanding test in terms of degree is the incircle test

(11 127 l37 14) [8]
Lemma 7 [8] The incircle test (I1,13,13;1s) can be solved with degree 40.

While the above lemmas provide an upper bound on the degree of a proximity problem,
the next theorem gives a lower bound.

Theorem 1 The nearest neighbor search problem for a point set has degree 2 in any fized
dimension d > 2.

Proof: We show the proof for the case d = 2. The proof for any other values of d is
analogous. Let p; = (21,¥1), p2 = (22,2), and ¢ = (4, Yg) be three points in the plane. In
order to determine which of p; and p; is the point nearest to g, a point-to-points distance
test must be performed.

This is equivalent to evaluate the sign of the difference d(p1,g) — d(p2, g) which, in turn,
is equivalent to the evaluation of the sign of d?(py, q) — d*(p2, q). We claim that the latter
computation has degree 2. In fact, we show below that d*(py, q) — d*(p2,g) cannot be
expressed as the product of two degree 1 polynomials, which implies that the degree of the -
problem is 2.

Suppose that there existed constants a',a”,¥',b", ¢, c", d, d", e e’ f', f such that:

d*(p1, q) — d*(p2,q) = 23 + yi — 2§ — y5 — 22124 + 20224 + 2y2Yg =
(@1 + bys + 3y + d'yz + €2g + fyg) - (21 + b"yy + 22 + d"y2 + €"zq + fyg).

The above equality implies e’e” = 0, since there cannot be a term e'e":cg. However,
either ¢ or e” is not 0 because of nonzero terms having z, as a factor. Assume, w.l.o.g.
that €’ # 0. Observe that d'e” = 0 because there is no term d'e"yay,; this implies d’' = 0.
However we must also have d’d” = —1 because of the term —yZ, a contradiction.

D

Observe that an optimal degree algorithm for the nearest neighbor search problem in a
planar point set can be easily represented by the brute force approach, where one computes
all the distances between the query point and all other points and reports the point at
minimum distance. However, such algorithm is both computationally inefficient (it requires
quadratic time) and does not support repetitive-mode queries. In Section 3 we present an
optimal degree algorithm whose query time and space are optimal.

8

3 Proximity Queries for Point Sites in the Plane

In this section, under our standard assumption that all input parameters — such as co-
ordinates of sites and query points — are represented by b-bit integers, we consider the
following proximity queries on a set S of point sites in the plane:

nearest neighbor search: given query point g, find a site of S whose Euclidean distance from
g is less than or equal to that of any other site;

k-nearest neighbors search: given query point g, find k sites of S whose Euclidean distances
from g are less than or equal to that of any other site;

circular range search: given query points ¢ and r, find the sites of S that are inside the
circle with center ¢ passing through r.

It is well known that such queries are efficiently solved by performing point location in
the Voronoi diagram (possibly of higher order) V'(S) of the sites [42).

We begin by examining in Section 3.1 the geometric test primitives used by the theoreti-
cally optimal and practically efficient point location methods. We identify three fundamen-
tal geometric test primitives for accessing the geometry of a planar map, and we introduce
the concepts of “native” and “ordinary” point location methods.

In Section 3.2, we show that the “conventional” approach of accessing the explicitly com-
puted Voronoi diagram V (S) of the sites causes point-location queries, and hence proximity
queries, to have degree at least 6.

In Sections 3.3-3.4, we describe our new implicit representation of Voronoi diagrams for
point sites in the plane, which allows us to perform proximity queries with optimal degree 2.

3.1 Test Primitives and Methods for Planar Point Location

The chain method [37), the bridged chain method [22], the trapezoid method [41], the sub-
division refinement method [35], and the persistent search tree method [44] are popular
deterministic techniques for point location in a planar map that combine theoretical effi-
ciency with good performance in practice (see, e.g., [21, 42]). Namely, denoting with n
the size of the map, all the above point location methods have O(logn) query time and
O(nlogn) preprocessing time. The space used is O(nlogn) for the trapezoid method and
O(n) for the other methods. For monotone maps, the preprocessing time is O(n) for the
chain method and the bridged chain method, and O(nlogn) for the other methods.

By a careful examination of the query algorithms used in the point location methods
presented in the literature, it is possible to clearly separate the primitive operations that
access the geometry of the map from those that access only the topology. We say that a
point location method is native for a class of maps if it performs point locations queries in a
map M of the class by accessing the geometry of M exclusively through the following three
geometric test primitives that discriminate the query point with respect to the vertices and
edges of M:

above-below(g, v) determine whether query point ¢ is vertically above or below vertex v.

left-right(g, v) determine whether query point ¢ is horizontally to the left or to the right of
vertex v.

left-right (g, ¢) determine whether query point g is to the left or to the right of edge e; this
operation assumes that edge e is not horizontal and its vertical span includes g.

Test primitive left-right(g, v) is typically used only in degenerate cases (e.g., in the pres-
ence of horizontal edges). "

A refinement of a map M is a map M’ such obtained from M by adding fictitious
vertices and edges. Examples of refinements of a map M area a triangulation of M and the
trapezoidal decomposition of M. Some point location methods work on refinements of the
original subdivision by means of auxiliary geometric objects introduced in the preprocessing
(e.g., triangulation or regularization edges). We say that a point location method is ordinary
for a class of maps if it is native for the refinements of the maps in the class.

Now, we analyze the chain method [37] for point location in a monotone map M. A
binary tree represents a balanced recursive decomposition of map M by means of vertically
monotone polygonal chains covering the edges of M, called separators. A point location
query consists of traversing a root-to-leaf path in this tree, where at each node we determine
whether the query point g is to the left or to right of the separator associated with the node.
The discrimination of point ¢ with respect to a separator o is performed in two steps:

1. we find the edge e of o whose vertical span includes point ¢ by means of binary search
on the y coordinates of the vertices of ¢, which consists of performing a sequence of
a logarithmic number of above-below(g, v) tests;

9. we discriminate g with respect to ¢ by performing test left-right(g, e).

In the special case that separator o has horizontal edges, the discrimination of point ¢
with respect to o uses also test primitive left-right(g, v). Hence, the chain method is native
for monotone maps. For a map M that is not monotone, fictitious “regularization edges are
added to M and point location in M is reduced to point location in the resulting refinement
M’ of M. Hence, the chain method is ordinary for general maps.

In the bridged chain method [22], the technique of fractional cascading [15, 16] is applied
to the sets of y-coordinates of the separators. Fractional cascading establishes “bridges”
between the separator of a node and the separators of its children such that there are
O(1) vertices between any two consecutive bridges. Hence, except for the separator of the
root, Step 1 can be executed with O(1) above-below(g, v) tests for the vertices between two
consecutive bridges. The bridged chain method is ordinary for general maps and native for
monotone maps.

A similar analysis shows that all efficient point location methods described in the liter-
ature are ordinary for general maps. More specifically, we have:

10

R

Lemma 8 The trapezoid method and the persistent search tree method are native for general
maps. The chain method and the bridged chain method are ordinary for general maps and
native for monotone maps. The subdivision refinement method is ordinary for general maps
and is native for trivial maps consisting of a single triangle.

Hence, all the known planar point location methods described in the literature are
ordinary for Voronoi diagrams.

3.2 Explicit Voronoi Diagrams

Let S be a set of n point sites in the plane, where each site is a primitive point with b-bit
integer coordinates. The Voronoi diagram V'(S) of S is said to be ezplicit if the coordinates
of the vertices of V(S) are computed and stored with exact arithmetic, i.e., as rational
numbers (pairs of integers).

Lemma 9 The left-right(g, €) test primitive in an ezplicit Voronoi diagram of point sites
in the plane has degree 6.

Proof: Let e = (v;,v;) be a Voronoi edge such that v; = (z1,%1) is equidistant from three
sites a = (Za,Ya), 0 = (b, W), € = (T, Ye) and v2 = (z2,y2) is equidistant from three sites
b= (zp, W), ¢ = (Tc, Yc), and d = (24,y4). See Figure 1. In an explicit Voronoi diagram,
test primitive left-right(g, €) that determines whether query point ¢ = (24, Yq) is to the left
or to the right of edge e = (v1,v;) is equivalent to evaluating the sign of the following
determinant:

Zq Yqg ¢ ‘;(9 3{,‘1 1 . Tg Y 1 Al
A=lzy y1 1|= ?IVI_ 2_)1'}171' 1 = W, W, X1 h W = wnwy
z2 Y2 1 T T X, Y2 W,
where
22+y2 Yo 1 z, 24yl 1 To Yo 1
Xy=|al+y w 1|, i=|a of+y; 1|, Wi=jz w 1
g24+y2 oy 1 z, z24yl 1 ze Yo 1

and X, Y2, and W, have similar expressions obtained replacing in the above determinants
z. with z4 and y, with ys. Evaluating the sign of A is equivalent to evaluating the signs of
Wi, Wy and of A'.

By using the notation introduced in Section 2.1, we can rewrite X; and Y; as o2, and W;
as a? (i = 1,2). Hence A’ is a degree-6 multivariate polynomial since it can be rewritten
as

0(013012 - 013012) - a(a3a2 - aaaz) + adad - adad —3(234) 6 +af —(3) o8,

11

L

Figure 1: Illustration for Lemma 9.

An algorithm for proximity queries on a set S of point sites in the plane is said to
be conventional if it computes the explicit Voronoi diagram V(S) of S and then performs
point location queries on V/(S) with an ordinary method. Note that the class of conventional
proximity query algorithms includes all the efficient algorithms presented in the literature.
A conventional proximity query algorithm needs to perform test primitive left-right(g, €).
Thus, by Lemma 9 we have:

Theorem 2 Conventional algorithms for the following prozimity query problems on a set
of point sites in the plane have degree at least 6:

e nearest neighbor query;
o k-nearest neighbor query;

e circular range query.

We observe that a degree-6 algorithm implies that a k-bit arithmetic unit can handle
with native precision queries for points in a grid of size at most ok/6 % 2k/6, For example,
if k = 32, the points that can be treated with single-precision arithmetic belong to a grid
of size at most 64 X 64.

3.3 Implicit Voronoi Diagrams

Let S be a set of n point sites in the plane, and recall our assumption that each site or
query point is a primitive point with b-bit integer coordinates. We say that a number s
is a semi-integer if it is a rational number of the type s = m/2 for some integer m. The
implicit Voronoi diagram V*(S) of S is a representation of the Voronoi diagram V(S) of S
that consists of a topological component and of a geometric component. The topological

12

component of V*(S) is the planar embedding of V'(5), represented by a suitable data struc-
ture (e.g., doubly-connected edge lists [42] or the data structure of [30]). The geometric
component of V*(S) stores the following geometric information for each vertex and edge of
the embedding:

e For each vertex v of V(§), V*(S) stores semi-integers z*(v) and y*(v) that approx-
imate the z- and y-coordinates y(v) of v, We provide the definition of y* (v) below.
The definition of z*(v) is analogous.

y(v) 0 < y(v) < 2%~ 1, y(v) integer
. ly()] +1 0<y(v) <2° -1, y(v) not integer
2 y(v) >2° -1
0 y(v) <0

Note that semi-integers z*(v) and y*(v) can be stored with (b + 1)-bits.

e For each non-horizontal edge e of V(S), V*(S) stores the pair of sites £(¢) and r(e)
such that e is a portion of the perpendicular bisector of £(e) and r(e), and £(e) is to
the left of r(e).

Equipped with the above information, the three test primitives for point location can
be performed in the implicit Voronoi diagram V*(S) as follows:

above-below (g, v) compare the y-coordinate of ¢ with y”(v);
left-right (g, v) compare the z-coordinate of ¢ with z*(v);

left-right(q, €) compare the Euclidean distances of point ¢ from sites £(e) and r(e).

Since the query point g is by assumption a primitive point whose coordinates are b-bit
integers, we have that y(g) < y(v) if and only if y(g) < y*(v), where testing the latter
inequality has degree 1. Similar considerations apply to testing z(q) < z(v). This proves
the correctness of our implementation of above-below(g,v) and left-right(g, v).

The correctness of the above implementation of test left-right(g,) follows directly from
the definition of Voronoi edges. Thus, in an implicit Voronoi diagram, test left-right(q, €)
can be implemented with a point-to-points distance test that has degree 2 (Lemma 4).

Hence, we obtain the following lemmas:

Lemma 10 Test primitives above-below(g, v) and left-right(g, v) in an implicit Voronoi di-
agram of point sites in the plane can be performed in O(1) time and with degree 1.

Lemma 11 Test primitive left-right(q, €) in an implicit Voronoi diagram of point sites in
the plane can be performed in O(1) time and with degree 2.

13

~ In order to execute a native point location algorithm in an implicit Voronoi diagram,
we only need to redefine the implementation of the three test primitives. By having encap-
sulated the geometry in the test primitives, no further modifications are needed. Hence, by
Lemmas 10-11 we obtain:

Lemma 12 For any native method on a class of maps that includes Voronoi diagrams, a
point location query in an implicit Voronoi diagram has optimal degree 2 and has the same
asymptotic time complezity as a point location query in the corresponding ezplicit Voronoi
diagram.

In order to compute the implicit Voronoi diagram V*(S), we begin by constructing the
Delaunay triangulation of S, denoted DT(S), by means of the O(nlog n)-time algorithm
of [30], which has degree 4 because its most expensive operation in terms of the degree is the
incircle test (see Lemma 5). The topological structure of V/(S) and the sites £(e) and r(e)
for each edge e of V(S) are immediately derived from DT(S) by duality. Next, we compute
the approximations z*(v) and y*(v) for each vertex v of V/(S) by means of integer division.
Let a, b, and ¢ be the three sites of S that define vertex v. Adopting the same notation as
in the proof of Lemma 9, the y-coordinate y(v) of v is given by the ratio y(v) = 2—’%7, where
Y; is a variable of arithmetic degree 3 and W; is a variable of arithmetic degree 2, and
similarly for z(v). Hence, the computation of *(v) and y*(v) has degree 3. We summarize
the above analysis as follows.

Lemma 18 The implicit Voronoi diagram of n point sites in the plane can be computed in
O(nlogn) time, O(n) space, and with degree 4.

Theorem 3 Let S be a set of n point sites in the plane. There ezists an O(n)-space data -
structure for S, based on the implicit Voronoi diagram V*(S), that can be computed in
O(nlogn) time with degree 5, and supports nearest neighbor queries in O(logn) time with
optimal degree 2.

Proof: We perform point location in the implicit Voronoi V*(S) diagram of S using a
native method for monotone maps with optimal space and query time, such as the bridged-
chain method or the persistent search tree method. The space requirement and the query
degree and time follow from the performance of these methods and from Lemma 12.
Regarding the preprocessing time, by Lemma 13, the construction of the implicit Voronoi
V*(S) takes time O(nlogn) time with degree 4. In order to construct the point location
data structure, we also need an additional test primitive that consists of comparing the
y-coordinates of two Voronoi vertices. E.g., this primitive is used to establish bridges in
the bridged-chain method (see Section 3.1) and to sort the vertices by y-coordinate in the
persistent location method. We can show that this primitive has degree 5. O

14

3.4 Implicit Higher Order Voronoi Diagrams

In this section, we introduce implicit higher order Voronoi diagrams for point sites in the
plane, and extend the results of Section 3.3 to k-nearest neighbors and circular range search
queries.

The definition of the implicit order-k Voronoi diagram V7 (S) of set S of point sites in
the plane is analogous to that given in Section 3.3 for Voronoi diagrams. A vertex v of Vi(S)
is represented by its approximate coordinates z*(v) and y*(v), and a non-horizontal edge e
of Vi(S) stores the pair of sites £(e) and r(e) such that e is a portion of the perpendicular
bisector of £(e) and r(e), and £(e) is to the left of r(e).

Lemmas 10-11 immediately hold also for Vi(S), and we obtain:

Lemma 14 For any native method for monotone maps, a point location query in an implicit
order-k Voronoi diagram has optimal degree 2 and has the same asymptotic time complezity
as a point location query in an ezplicit order-k Voronoi diagram.

The order-k Voronoi diagram Vi (S) for a set S of n point sites has O(k(n — k)) vertices,
edges, and faces, and can be obtained from the order k —1 implicit Voronoi diagram Vi-1(S)
by intersecting each face of Vi (S) with the (order 1) Voronoi diagram of a suitable subset
of the vertices of S [36]. Asshown in [36, 14], Vi(S) can be computed in O(k(n—k)y/nlogn)
time. Since the construction is based on iteratively computing Voronoi diagrams by using
the incircle test, which is the most expensive operation in terms of degree, the overall degree
of the preprocessing is 4 (Lemma 5). Hence, we obtain.

Lemma 15 The implicit order-k Voronoi diagram of n point sites in the plane can be
computed in O(k(n — k)/nlogn) time, O(k(n — k)) space, and with degree 4.

Point location in the order-k Voronoi diagram solves k-nearest neighbors queries. Hence,
by Theorem 1 and Lemmas 14-15, we obtain:

Theorem 4 Let S be a set of n point sites in the plane and k an integer with1 < k < n-1.
There ezists an O (k(n—k))-space data structure for S, based on the implicit order-k Voronoi
diagram Vi (S), that can be computed in O(k(n—k)+/nlogn) time with degree 5 and supports
k-nearest neighbors queries in O(logn + k) time with optimal degree 2.

Circular range search queries in a set S of n point sites can be reduced to a sequence
of 2-nearest neighbors queries in V,i(S), ¢ = 0,---,logn [7]. This approach yields a data
structure with O(n3) space and preprocessing time, and O(lognloglogn + k) query time,
where k is the size of the output. Hence, with analogous reasoning as above, we obtain the
following theorem.

Theorem 5 Let S be a set of n point sites in the plane. There ezists an O(n3)-space data
structure for S, based on implicit order-k Voronoi diagrams, that can be computed in O(n?)
time with degree 5 and supports circular range search queries in O(lognloglogn + k) time
with optimal degree 2.

15

The space and preprocessing time of Theorems 4-5 and the query time of Theorem -
5 can be substantially improved while preserving the same degree bounds using the data
structures presented in [1, 2, 13].

4 Proximity Queries for Point Sites in 3D Space

In this section, we consider the following proximity query on a set S of point sites in three-
dimensional (3D) space:

nearest neighbor search: given query point g, find a site of S whose Euclidean distance from
q is less than or equal to that of any other site;

We recall our assumption that the sites and query points are primitive points represented
by b-bit integers.

As for the two-dimensional case, such query is efficiently answered by performing point
location in the 3D Voronoi diagram of S. Test primitives and methods for spatial point
location are described in Section 4.1. Section 4.2 shows that “conventional” algorithms
require degree 8. A degree 3 algorithm based on “implicit” 3D Voronoi diagrams is then
given in Section 4.3.

4.1 Test Primitives and Methods for Spatial Point Location

There are only two known efficient spatial point location methods for cell-complexes that are
applicable to 3D Voronoi diagrams: the separating surfaces method [12, 47], which extends
the chain-method [37], and the persistent planar location method [43], which extends the
persistent search tree method [44]. Let N be the number of facets of a cell-complex C.
The query time is O(log? N) for both methods. The space used is O(N) for the separating
surfaces method and O(N log? N) for the persistent planar location method. Both methods
are restricted to convex cell-complexes. The separating surfaces method is further restricted
to acyclic convex cell-complexes, where the dominance relation among cells in the z-direction
is acyclic.

As in Section 3.1, we can separate the primitive operations that access the geometry of
the cell-complex from those that access only the topology. We say that a point location
method is native for a class of 3D cell-complexes if it performs point locations queries in a
cell complex C of the class by accessing the geometry of C exclusively through the following
three geometric test primitives that discriminate the query point with respect to the vertices
and edges of C:

above-below (g, v) compare the z-coordinate of the query point g with the z-coordinate of
vertex v.

left-right(g, v) compare the z-coordinate of the query point ¢ with the z-coordinate of ver-
tex v.

16

front-rear(g, v) compare the y-coordinate of the query point g with the y-coordinate of
vertex v.

left-right (gzy, €zy) compare the zy-projection gzy of the query point g with the zy-projection
of edge e,,. This operation assumes that e, is not parallel to the z-axis and its y-span
includes gy.

above-below(gy., ey:) compare the yz-projection gy of the query point ¢ with the yz-
projection of edge ey,. This operation assumes that ey, is not parallel to the y-axis
and its z2-span a includes gy,.

above-below(g, f) determine whether query point g is above or below a facet f; this opera-
tion assumes that facet f is not parallel to the z-axis and that the zy-projection of f
contains the zy-projection of q.

Test primitives front-rear(q, v) and left-right(g, v) are used only in degenerate cases (e.g.
in the presence of facets parallel to the z-axis and in cases where ey is horizontal).

Now, we analyze the separating surfaces method for spatial point location [12, 47] in
acyclic cell-complexes. Separating surfaces are the 3D analogue of separators of monotone
maps. Their existence is guaranteed by the acyclicity of the cell-complex. Thus, a point
location query consists of traversing a root-to-leaf path in the separating surface tree, where
at each node we determine whether the query point g is to above or below the separating
surface associated with the node. The discrimination of point ¢ with respect to a separating
o is performed in two steps:

1. by means of a planar point location query for the zy-projection gy of ¢ in the zy pro-

jection of o, we find the facet f of ¢ whose zy projection contains g¢;,. If an ordinary -

point location method is used, this step uses primitives front-rear(g, v}, left-right(g, v),
and left-right (gzy, €zy)-

2. we discriminate ¢ with respect to o by performing test above-below(g, f).

In the special cases that cell-complex C has facets parallel to the z-axis, the discrim-
ination of point g with respect to o uses also test primitives above-below(g,v). Thus, the
separating surfaces method is native for acyclic convex cell-complexes.

A similar analysis shows that also the persistent planar location method is native for
convex cell-complexes. More specifically, we have:

Lemma 16 The separating surfaces method is native for acyclic convezr cell-complezes.
The persistent planar location method is native for conver cell-complezes.

Hence, all the known spatial point location methods described in the literature are native
for 3D Voronoi diagrams.

4.2 Explicit Voronoi Diagrams

Let S be a set of n point sites in 3D, where each site is a primitive point with b-bit integer
coordinates. The 3D Voronoi diagram V(S) of S is said to be explicit if the coordinates
of the vertices of V(S) are computed and stored with exact arithmetic, i.e., as rational
numbers (pairs of integers).

Lemma 17 The left-right(gry, €zy) test primitive in an ezplicit Voronoi diagram of point
sites in 3D space has degree 8.

Proof: The reasoning is the same as in the proof of Lemma 9. Let ez y = (v1,v2), where vy
and v, are the zy-projections of two adjacent vertices u and v of V(S); let u be equidistant
from the four primitive sites a = (Za,%a), b = (Zby W), € = (e, Ye), and d = (zd,ya), and
v from @ = (Ta,Ya), b = (Tb, Yb), € = (ZcyYe), and h = (zh,yn). A conventional algorithm
determines whether query point ¢ = (z4,y,) is to the left or to the right of the oriented
edge € = (v1,v2) by evaluating the sign of the following determinant:

Tg Yg 4 Za Y 1 R 1 ’
A=lzy y 1= 2—)‘{11/1‘ qv)l/? Vi=gmw; | X0 Y1 W1 | = wwss
Ty Y2 1 §W2; TV%’; 1 X2 Y, W, l
where
:Eg + yg + ZZ Ya Z2a 1 Zq zg + yg + ZZ zg 1 Za Ya
2+ttt o o 1 zy 224 yi+z = 1 o U
X, = b b b Y, = b b b b W: =
! zg + 3/3 + Zz Yo Z2c 1 k ! Ze 373 + yZ + zz z. 1 ! 1 Te Ye
(1?3 + y§ + 23 ya Za 1 T4 :CZ + yﬁ + 23 zg 1 Tq Yd

and X, Yz, and W, have similar expressions obtained replacing in the above determinants
74 with zp, yg with yp, and 24 with zp.

Evaluating the sign of A is equivalent to evaluating the signs of Wj, W, and of A

By using the notation introduced in Section 2.1, we can rewrite X; and Y] as o, and W;
as o® (i = 1,2). Hence A’ is a degree-8 multivariate polynomial since it can be rewritten
as

4.3 4 4.3 4 4.4

a(ofa® — ata®) — a(a’a’ — o a®) + a*o® - oo —5234) o848 —0)

(]

An algorithm for nearest neighbor queries on a set S of point sites in 3D space is
said to be conventional if it computes the explicit 3D Voronoi diagram V(S) of S and
then performs point location queries on V(S) with a native method. Recall that the class
of conventional nearest neighbor query algorithms includes the two efficient algorithms
presented in the literature. A conventional proximity query algorithm needs to perform
test primitive left-right(gzy, ezy). Thus, by Lemma 17, we have:

Theorem 6 Conventional algorithms for the nearest neighbor query problem on a set of
point sites in 3D space have degree at least 8.

18

2
2b
Zc
Zd

s

4.3 Implicit Voronoi Diagrams

The definition of the implicit 3D Voronoi diagram V*(S) of a set of S of point sites in 3D
space is a straightforward extension of the definition for two-dimensional Voronoi diagrams
given in Section 3.3. Namely V*(S) stores the topological structure of the 3D Voronoi
diagram V(S) of S (e.g., the data structure of [20]) and the following geometric information
for each vertex and facet:

e For each vertex v of V(S), V*(S) stores the semi-integer (b+ 1)-bit approximations

z*(v), y*(v) and z*(v) of the z-, y-, and z-coordinates of v.

e For each facet f of V(S) that is not parallel to any of three Cartesian planes, V*(S5)
stores the pair of sites £(f) and r(f) such that f is a portion of the perpendicular
bisector of £(f) and r(f), and £(f) is below r(f).

The tests above-below(g, v), left-right(g, v), front-rear(g, v) can be implemented compar-
ing the z-, y- and z-coordinate of query point ¢ with z(v)*, y(v)*, and z(v)* respectively.
With the same reasoning as for the two-dimensional case (see Section 3.3), it is easy to see
that such implementations are correct.

Lemma 18 Test primitives above-below(g, v), left-right(g, v), front-rear(q, v) in an implicit
Voronoi diagram of 8D point sites can be performed in O(1) time and with degree 1.

Test primitive above-below(q, f) is implemented by comparing the Euclidean distances
of point ¢ from the two sites £(e) and r(e) of which f is the perpendicular bisector, with
a point-to-points distance test. The implementation is correct by the definition of Voronoi
facet. Thus, by Lemma 4, we have.

Lemma 19 Test primitive above-below(g, f) in an implicit Voronoi diagram of 8D point
sites can be performed in O(1) time and with degree 2.

Finally, test left-right(gzy, €zy) is implemented by determining the sign of the equation
of the line that contains edge ey, when computed at point gzy.

Lemma 20 Test primitive left-right(gzy, €zy) in an implicit Voronoi diagram of 3D point
sites can be performed in O(1) time and with degree 3.

Proof: The line containing the oriented edge ez, is the projection on the zy-plane of the
intersection of two planes containing two facets of the three dimensional Voronoi diagram.
Let a;z + b;y + ¢;z + d; = 0 be the equation of one such plane (i = 1,2). The projection of
their intersection on the zy-plane is

d1 C1
dy ¢

by o
by ¢

a ¢
az €2

T+ =0

19

Test left-right(¢sy, €xy) consists of determining the sign of

di ¢
dy ¢

by o

by c;

ay ¢

az €3 !

Zq Yq

which is a multivariate polynomial having arithmetic degree 3, since it can be rewritten as
aa’ + ad® + o3 —(23) o3,
(]

In order to execute a native point location algorithm in an implicit 3D Voronoi diagram,
we only need to redefine the implementation of the five test primitives. By having encap-
sulated the geometry in the test primitives, no further modifications are needed. Hence, by
Lemmas 18-20 we obtain:

Lemma 21 For any native method on a class of cell-complezes that includes 8D Voronoi
diagrams, a point location query in an implicit 3D Voronoi diagram has degree 8 and has
the same asymptotic time complezity as a point location query in an explicit 8D Voronoi
diagram.

The Voronoi diagram of n point sites in 3D space is an acyclic convex cell complex with
N = O(n?) facets. Hence, using the separating surfaces method on the implicit 3D Voronoi
diagram yields the following result:

The implicit Voronoi diagram V*(S) of a set S of n points in 3D space can be constructed
by computing the 3D Delaunay triangulation with the incremental algorithm by Joe [33],
whose time complexity and storage is O(n?) (see also [40]). Since the most demanding
operation of the algorithm in terms of degree is the 3D insphere test, from Lemma 6 we
have that the degree of the algorithm that computes V(S) is 5. As in the planar case,
the topological structure of V/(S) and the sites £(f) and r(f) for each edge e of V(S) are
immediately derived from DT (S) by duality. Omitting various details, we have:

Lemma 22 The implicit Voronoi diagram of a set of n point sites in 3D space can be
computed in O(n?) time and space, and with degree 5.

Lemmas 21 and 22 lead to the following theorem.

Theorem 7 Let S be a set of n point sites in 3D space. There exists an O(n?)-space data
structure for S that can be computed in O(n?) time with degree 7 and supports nearest
neighbor queries in O(log’ n) time with degree 3.

Note that the degree 7 of the preprocessing is due to an additional test primitive that
consists of comparing the y-coordinates of two Voronoi vertices

Although the algorithm for nearest neighbor queries proposed in this section has nonop-
timal degree 3, it is a practical approach for the important application scenario where the
primitive points are pixels on a computer screen. On a typical screen with about 210 x 210
pixels, our nearest neighbor query can be executed with the standard integer arithmetic of
a 32-bit processor.

20

5 Proximity Queries for Point and Segment Sites in the
Plane

In this section, we consider the following proximity query on a set S of point and segment
sites in the plane:

nearest neighbor search: given query point g, find a site of S whose Euclidean distance from
q is less than or equal to that of any other site.

As for the other queries studied in the previous sections, such query is efficiently solved
by performing point location in the Voronoi diagram of the set of point and segment
sites [42].

The test primitives needed by such approach are described in Section 5.1. Section 5.2
shows that the “conventional” approach requires degree 64. A degree 6 algorithm based on
“implicit” Voronoi diagrams is then given in Section 5.3.

5.1 Test Primitives and Methods

The Voronoi diagram V(S) of a set S of point and segment sites is a map whose edges are
either straight-line segments or arcs of parabolas. Hence, in general V'(S) is neither convex
nor monotone. In order to perform point location in V(S), we refine V(S) into a map
with monotone edges as follows. If edge e of V(S) is an arc of parabola whose point p of
maximum (or minimum) y-coordinate is not a vertex, we split e into two edges by inserting
a fictitious vertex at point p. We call the resulting map the eztended Voronoi diagram V'(S)
of S.

The persistent search tree method and the trapezoid method can be used as native
methods on the extended Voronoi diagram, where the test primitives are the same as those
defined in Section 3.1 for point sites. If we want to use the chain method or the bridged
chain method, we need to do a further refinement that transforms the map into a monotone
map by adding vertical fictitious edges emanating from the fictitious vertices previously
inserted along the parabolic edges.

Lemma 23 The trapezoid method and the persistent search tree method are native, and the
chain method and the bridged chain method are ordinary for ertended Voronoi diagrams of
point and segment sites.

5.2 Explicit Voronoi Diagrams

Let S be a set of n points and segment sites. The extended Voronoi diagram V'(S) of S is
said to be ezplicit if the coordinates of the vertices of V/(S) are computed and stored with
exact arithmetic, i.e., as algebraic numbers [9, 49].

In the following lemma, we analyze the degree of test primitive left-right(g,e) for a
straight-line edge e of an explicit extended Voronoi diagram.

21

Lemma 24 The left-right(g, €) test primitive for a straight-line edge e in an ezplicit ez-
tended Voronoi diagram of point and segment sites in the plane has degree 64.

Proof: Let e = (v, v2), such that vy = (z1,y1) is equidistant from three segments sy, S2,
and s3 and vy is from three segments 3, S2, and s4. See Figure 2.

—

e 5,

. s, —_— =
4 \\
9 \/V’ /
A 6
Z2NNVAN
S

N\
\s’

Figure 2: Illustration for Lemma 24.

We show that the test left-right(g, €) for determining whether the query point ¢ = (z4,Yq)
is to the left or to the right of (v,v2) has degree 64. Namely, let a;z + by +¢; = 0
(i = 1,2,3,4) be the equation of the line containing segment s;. A conventional algorithm
computes the above test by evaluating the sign of the determinant:

g Yg 1 ;‘(q 1;/;1 1 . zg Yo 1 N
A=|zy n 1|= ?1; ‘17}‘,/"1‘ 1 = Ww, X n Wi = Ww,
To Y2 1 W?; VVZ'; 1 Xz Yz Wz
where
by a Va?-{-b% a; ¢ 4fal+b3 by a; fa?+b?
Xi=|by ¢ (Jad+b}| » i=|a c Vai+b| , Wi=1b a /a3 + b3
by cs yfad+ b3 as ¢z o +b3 bs as /al+ b2

and X, Y,, and W, have similar expressions obtained substituting in the above determi-
nants az with a4, bs with bs and c3 with ¢4. Evaluating the sign of A is equivalent to
evaluating the signs of Wy, W and of A'. In the rest of this proof we show that evaluating
the sign of A’ is a computation with degree 64. By using the same technique, one can easily
see that evaluating the signs of Wy and W is a computation with degree 12.

22

We have
A = zo(Y,Wy = i) — o (Xa W2 — XoW1) + (X2Y - X1Y3) (1)

By using the notation introduced in Section 2.1, we can rewrite X;, and Y; as ap; +
a®py + oBps, Wi as a®py + o®py + a®ps, X; and Y; as op1 + o®py + a®py, and Wy as
a2p; + a?py + apy, where p; = y/a? +b? (i = 1,...,4). Considering that zg and y, are
expressions of type @, and applying repeatedly Rules (1) and (2), we obtain the expression

a8 + a%p1p2 + aBp1ps + a®p1pa + a®paps + @®p2ps + a®pspa.

By means of the rewriting rules of Section 2.1 we have:

a® + a%p1p2 + a®pips + Pp1ps + aBpaps + a®p2ps + aCpsps —

(a® + apaps + aBpaps + apsps)® — (0Pprp2 + o®p1ps + afp1ps)? —(1234)
a'® 4 aMpyps + oM paps + oM 4paps —7
(18 + alipyps)? — (a1 papa + alp3ps)? —3(1,2,3,4)
a® + a®pzp3 —)

af4 — bt —(34)
a64

O

An algorithm for proximity queries on a set S of point and segment sites in the plane is
said to be conventionalif it computes the explicit extended Voronoi diagram V'(S) of S and
then performs point location queries on V'(S) with a native method. Note that the class of
conventional proximity query algorithms includes all the efficient algorithms presented in
the literature. A conventional proximity query algorithm needs to perform test primitive
left-right (g, €). Thus, by Lemma 24 we conclude:

Theorem 8 Conventional algorithms for the nearest neighbor query problem on a set of
point and segment sites in the plane have degree at least 64.

Our analysis shows that performing point location in an explicit Voronoi diagram of
points and segments is not practically feasible due to the high degree.

5.3 Implicit Voronoi Diagrams

The definition of the implicit Voronoi diagram V*(S) of a set of S of point and segment sites
is a straightforward extension of the definition for Voronoi diagrams of point sites given in
Section 3.3. Namely V*(S) stores the topological structure of the extended Voronoi diagram
V/(S) of S (e.g., the data structure of [20]) and the following geometric information for each
vertex and edge:

23

i

e For each vertex v of V'(S), V*(S) stores the semi-integer (b+ 1)-bit approximations
z*(v) and y*(v) of the z- and y-coordinates of v.

e For each non-horizontal edge e of V'(S), V*(S) stores the pair of sites £(e) and r(e)
such that e is a portion of the bisector of £(e) and r(e), and £(e) is to the left of r(e).

In the implicit Voronoi diagram V*(S) of S, test left-right(g,) is implemented by com-
paring the distances of query point ¢ from sites £(e) and r(e) with one of the following
tests, dpending on the type (point or line) of sites £(e) and r(e): point-to-lines distance test,
point-to-point-line distance test, or point-to-points distance test. Thus, by Lemmas 24, we
have.

Lemma 25 For any native method on a class of maps that includes eztended Voronoi
diagrams of point and segment sites in the plane, a point location query in an implicit
Voronoi diagram has degree 6 and has the same asymptotic time complezity as a point
location query in an ezplicit Voronoi diagram.

The implicit Voronoi diagram can be constructed in O(nlogn) expected running time
by using the randomized incremental algorithm of [10]. The most demanding operation is
incircle test for three segments, which has degree 40 by Lemma 7 (see also [8]). It is not hard
to show that both the y-ordering of the vertices of V(S) and the semi-integer approximation
of the vertex coordinates can be performed without affecting the computational cost and
the degree of the computation of V(S).

Lemma 26 The implicit Voronoi diagram of a set of n point and segment sites in the plane
can be computed in O(nlogn) ezpected time, O(n) space, and degree 40. '

Theorem 9 Let S be a set of n point and segment sites in the plane. There ezists an O(n)-
space data structure for S that can be computed in O(nlog n) ezpected time with degree 40
and supports nearest neighbor queries in O(logn) time with degree 6.

6 Simplified Implicit Voronoi Diagrams

In this section, we describe a modification of implicit Voronoi diagrams of point sites that
allows us to reduce the degree of the preprocessing task from 5 to 4 when the sites are in
the plane (see Theorems 3-5), and from 7 to 5 when the sites are in three-dimensional space
(see Theorem 7). This modification also has a positive impact on the space requirement of
the data structure and on the running time of point location queries.

Let V(S) be the Voronoi diagram of a set S of point sites in the plane. We recall our
standard assumption that all input parameters — such as coordinates of sites and query
points — are represented as b-bit integers.

An island of V(S) is a connected component of the map obtained from V/(S) by removing
all the vertices with integer y-coordinate and all the edges containing a point with integer

24

y-coordinate. Note that for any two vertices v; and v, of an island, y*(v1) = y*(v2) = m+%
for some integer m, where y*(v) is the semi-integer approximation defined in Section 3.3.

The simplified implicit Voronoi diagram V°(S) of S is a representation of the Voronoi
diagram V(S) of S that consists of a topological component and of a geometric component.
The topological component of V°(S) is the planar embedding obtained from V(S) by con-
tracting each island of V/(S) into an alias vertez. The geometric component of V°(S) stores
the following geometric information for each vertex and edge of the embedding:

e For each vertex v that is also a vertex of V (S), V°(S) stores the (b+1)-bit semi-integers
approximations z*(v) and y*(v).

e For each alias vertex a, which is associated with an island of V(S), V°(S) stores
semi-integer y*(a) such that y*(a) = y*(v) for each vertex v of the island.

e For each non-horizontal edge e that is also an edge of V (S), V°(S) stores the pair of
sites £(¢) and r(e) such that e is a portion of the perpendicular bisector of £(e) and
r(€). and £(€) is to the left of r(e).

The space requirement of the simplified implicit Voronoi diagram is less than or equal
to that of the implicit Voronoi diagram, since each island is represented by a single alias
vertex storing only its semi-integer y-approximation. We can show examples where the
simplified implicit Voronoi diagram of n point sites has O(n) fewer vertices and edges than
the corresponding implicit Voronoi diagram.

The following lemmas extend Lemmas 12-13 and can be proved with similar techniques.

Lemma 27 For any native method on a class of maps that includes monotone maps, a point
location query in a simplified implicit Voronoi diagram has optimal degree 2 and ezecutes
a number of operations less than or equal to a point location guery in the corresponding
ezplicit Voronoi diagram.

Lemma 28 The simplified implicit Voronoi diagram of n point sites in the plane can be
computed in O(nlogn) time, O(n) space, and with degree 4.

The main advantage of the simplified implicit Voronoi diagram with respect to the degree
cost measure is that the additional test primitive needed in the preprocessing that consists
of comparing the y-coordinates of two Voronoi vertices (see the proof of Theorem 3) is now
reduced to the comparison of two (b + 1)-bit semi-integers, and thus has degree 1. Hence,
the preprocessing for point location using a native method for monotone maps has degree 1.

By the above discussion and Lemmas 27-28, we obtain the following theorem that
improves upon Theorem 3.

Theorem 10 Let S be a set of n point sites in the plane. There exists an O(n)-space
data structure for S, based on the simplified implicit Voronoi diagram V°(S), that can be
computed in O(nlogn) time with degree 4 and supports nearest neighbor queries in O(log n)
time with optimal degree 2.

25

L |

© Using a similar approach, we can define simplified implicit order-k Voronoi diagrams for
point sites in the plane and simplified implicit Voronoi diagrams for point sites in three-
dimensional space. This reduces the degree of the preprocessing from 5 to 4 in Theorems 4-5,
and from 7 to 5 in Theorem 7.

7 Further Research Directions

Within the proposed approach, this paper only addresses the issue of the degree of test
computations, and illustrates its impact on algorithmic design in relation to a central prob-
lem in computational geometry. However, several important related problems need further
investigation, and will be reported on in the near future.

First and foremost, since the degree of an algorithm expresses worst-case computational
requirement occurring in degenerate or near-degenerate instances, special attention must
be devoted to the development of a methodology that reliably computes the sign of an
expression with the least expenditure of computational resources. This involves the use
of “arithmetic filters,” possibly families of filters, of progressively increasing power that,
depending upon the values of primitive variables, carefully adjust the computational effort
(see, e.g., [4, 10, 25, 34]).

Next, one should carefully analyze the precision adopted in executing constructions, so
that the outputs are within the precision bounds required by the application. In addition,
each construction algorithm should be accompanied by a verification algorithm, which not
only checks for topological compliance of the output with the generic member of its class
(as, e.g.. a Voronoi diagram must have the topology of a convex map) as illustrated in [45],
but more specifically verifies its topological agreement with the structure emerging from
the tests executed by the algorithm [38].

Beyond these general methodological issues, the investigation reported in these pages
leaves some interesting open problems, such as answering nearest neighbor queries in sub-
quadratic time and optimal degree for a set of points in three-dimensional space, or improv-
ing the efficiency of the preprocessing stage in computing the implicit Voronoi diagram of
a set of sites.

We mention, in this respect, how the degree can impact the design of geometric primi-
tives adopted in existing algorithms for Voronoi diagrams of point and segment sites. Let
(a,az,as; as), With a; either a point or a segment, denote the incircle test, where a4 is
tested for intersection with circle(ay, az, as). Specifically, consider (p1, P2, l1; p3), which can
be answered with degree 12 [8]. We show that it can be more efficiently executed as fol-
lows. Perform first the test (py,p2,ps;l1). Let ¢ and ¢’ be the centers of circle(py,p2,01)
and circle(p; , p2, p3), respectively. Two cases are possible: either circle(p;, p2, p3) intersects
I; or it does not. In the first case, p; is inside circle(py, p2, 1) if and only if ¢’ and ps lie on
opposite sides of line pipz through p; and p; (see Figure 3 (a) and (b)). In the second case
the answer to test (p1,p2,l1;ps) depends on which side of 7Pz point p3 lies (see Figure 3
(c) and (d)). Thus test (p1, P2, l1; p3) is reduced to test (p1, P2, p3;l1) that can be executed
with degree 8 (see [8]), and at most two other left-right tests of lower degree.

26

L

@ o)

\=

@

Figure 3: Different cases for test (p1, p2, l1;p3).

World Wide Web by using the architectural framework of Mocha [6, 5].

27

Finally, an important issue for future research deals with the experimental comparison
between point location algorithms in implicit Voronoi diagrams and traditional point loca-
tion algorithms in explicit Voronoi diagrams. We are currently implementing GeomlLib, an
object-oriented library for robust geometric computing that will be accessible through the

References

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing
the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4(6):591-604, 1989.

[2] A. Aggarwal, M. Hansen, and T. Leighton. Solving query-retrieval problems by compacting
Voronoi diagrams. In Proc. 22nd Annu. ACM Sympos. Theory Comput., pages 331-340, 1990.

[3] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure.
ACM Comput. Surv., 23:345-405, 1991.

[4] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluating signs of
determinants using single-precision arithmetic. Research Report 2306, INRIA, BP93, 06902
Sophia-Antipolis, France, 1994.

[5] J. E. Baker, L. F. Cruz, G. Liotta, and R. Tamassia. The Mocha algorithm animation system.
ACM Comput. Surv., 27:568-572, 1995.

[6] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. Animating geometric algorithms over the
Web. In Proc. 12th Annu. ACM Sympos. Comput. Geom., 1996. to appear.

[7] J. L. Bentley and H. A. Maurer. A note on Euclidean near neighbor searching in the plane.
Inform. Process. Lett., 8:133-136, 1979.

[8] C. Burnikel. Ezact Computation of Voronoi Diagrams and Line Segment Intersections. PhD
thesis, Technischen Fakultdt der Universitat des Saarlandes, Saarbiicken Germany, March 1996.
Available at URL: http://www.mpi-sb.mpg.de:80/ burnikel/thesis/.

[9] C. Burnikel, J. Kénnemann, K. Mehlhorn, S. Niher, S. Schirra, and C. Uhrig. Exact geometric
computation in LEDA. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages C18-C19,
1995.

[10] C.Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments:
Theoretical and experimental results. In Proc. 2nd Annu. European Sympos. Algorithms (ESA
'94), volume 855 of Lecture Notes in Computer Science, pages 227-239. Springer-Verlag, 1994.

[11] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. In Proc.
5th ACM-SIAM Sympos. Discrete Algorithms, pages 16-23, 1994.

[12] B. Chazelle. How to search in history. Inform. Control, 64:77-99, 1985.

[13] B. Chazelle, R. Cole, F. P. Preparata, and C. K. Yap. New upper bounds for neighbor searching.
Inform. Control, 68:105-124, 1986.

[14] B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing kth-order Voronoi
diagrams. IEEE Trans. Comput., C-36:1349-1354, 1987.

[15] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorith-
mica, 1:133-162, 1986.

[16] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1:163-191,
1986. '

[17) K. L. Clarkson. Safe and effective determinant evaluation. In Proc. §8rd Annu. IEEE Sympos.
Found. Comput. Sci., pages 387-395, 1992.

28

[18] T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay triangulations in three dimensions with
finite precision arithmetic. Comput. Aided Geom. Design, 9:457-470, 1992.

[19) D. P. Dobkin. Computational geometry and computer graphics. Proc. IEEE, 80(9):1400-1411,
Sept. 1992.

[20] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of three-dimensional subdivi-
sions. Algorithmica, 4:3-32, 1989.

[21] M. Edahiro, I. Kokubo, and T. Asano. A new point-location algorithm and its practical effi-
ciency: comparison with existing algorithms. ACM Trans. Graph., 3:86-109, 1984.

[22] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM J. Comput., 15:317-340, 1986.

[23] H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM Trans. Graph., 9:66-104, 1990.

[24] S. Fortune. Stable maintenance of point set triangulations in two dimensions. In Proc. 30th
Annu. IEEE Sympos. Found. Comput. Sci., pages 494-505, 1989.

[25] S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations. Internat. J.
Comput. Geom. Appl., 5(1):193-213, 1995.

[26] S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computational geometry. In Proc.
9th Annu. ACM Sympos. Comput. Geom., pages 163-172, 1993.

[27] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 1987.

[28] D. H. Greene and F. F. Yao. Finite-resolution computational geometry. In Proc. 27th Annu.
IEEE Sympos. Found. Comput. Sci., pages 143-152, 1986. :

[29] L. J. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: building robust algorithms from
imprecise computations. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 208-217, .
1989.

[30) L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Trans. Graph., 4:74-123, 1985.

[31] C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. IEEE
Computer, 22(3):31-41, Mar. 1989.

[32] C. M. Hoffmann, J. E. Hopcroft, and M. T. Karasick. Robust set operations on polyhedral
solids. JEEE Comput. Graph. Appl., 9(6):50-59, Nov. 1989.

[33) B. Joe. Construction of three-dimensional Delaunay triangulations using loca! transformations.
Comput. Aided Geom. Design, 8(2):123-142, May 1991.

[34] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations using rational
arithmetic. ACM Trans. Graph., 10:71-91, 1991.

[35] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28-35, 1983.

[36] D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput.,
C-31:478-487, 1982.

[37] D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its applications.
SIAM J. Comput., 6:594-606, 1977.

29

[38] K. Mehlhorn, S. Naher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and C. Uhrig. Checking
geometric programs or verification of geometric structures. In Proc. 12th Annu. ACM Sympos.
Comput. Geom., 1996. to appear.

[39] V. Milenkovic. Verifiable implementations of geometric algorithms using finite precision arith-
metic. Artif. Intell., 37:377-401, 1988.

[40] E. Miicke. Detri 2.2: A robust implementation for 3d triangulations. Manuscript, available at
URL: http://www.geom.umn.edu:80/software/cglist /lowdvod.html, 1996.

[41] F. P. Preparata. A new approach to planar point location. SIAM J. Comput., 10:473-482,
1981. :

[42] F. P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
New York, NY, 1985.

[43] F. P. Preparata and R. Tamassia. Efficient point location in a convex spatial cell-complex.
SIAM J. Comput., 21:267-280, 1992.

[44] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun,
ACM, 29:669-679, 1986.

[45] K. Sugihara and M. Iri. Construction of the Voronoi diagram for ‘one million’ generators in
single-precision arithmetic. Proc. IEEE, 80(9):1471-1484, Sept. 1992.

[46] K. Sugihara, Y. Ooishi, and T. Imai. Topology-oriented approach to robustness and its ap-
plications to several Voronoi-diagram algorithms. In Proc. 2nd Canad. Conf. Comput. Geom.,
pages 36-39, 1990.

[47] R. Tamassiaand J. S. Vitter. Optimal cooperative search in fractional cascaded data structures.
Algorithmica, 15(2), 1996.

[48] C. K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput., 10:349-370,
1990.

[49] C. K. Yap. Toward exact geometric computation. Computational Geometry: Theory and
Applications, 1996. to appear.

30

